首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24559篇
  免费   1904篇
  国内免费   1167篇
电工技术   253篇
综合类   1193篇
化学工业   10344篇
金属工艺   4269篇
机械仪表   317篇
建筑科学   716篇
矿业工程   518篇
能源动力   1465篇
轻工业   2709篇
水利工程   136篇
石油天然气   1361篇
武器工业   92篇
无线电   539篇
一般工业技术   2242篇
冶金工业   1163篇
原子能技术   226篇
自动化技术   87篇
  2024年   52篇
  2023年   509篇
  2022年   600篇
  2021年   787篇
  2020年   812篇
  2019年   803篇
  2018年   722篇
  2017年   800篇
  2016年   734篇
  2015年   694篇
  2014年   1118篇
  2013年   1325篇
  2012年   1388篇
  2011年   1717篇
  2010年   1277篇
  2009年   1511篇
  2008年   1301篇
  2007年   1598篇
  2006年   1445篇
  2005年   1232篇
  2004年   1051篇
  2003年   931篇
  2002年   768篇
  2001年   710篇
  2000年   626篇
  1999年   401篇
  1998年   382篇
  1997年   304篇
  1996年   325篇
  1995年   218篇
  1994年   211篇
  1993年   199篇
  1992年   177篇
  1991年   160篇
  1990年   143篇
  1989年   78篇
  1988年   58篇
  1987年   55篇
  1986年   52篇
  1985年   53篇
  1984年   50篇
  1983年   23篇
  1982年   43篇
  1981年   36篇
  1980年   32篇
  1979年   20篇
  1978年   24篇
  1977年   18篇
  1976年   17篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
41.
采用真空雾化的方法制备了Ta含量为0、2%及5%的NiCoCrAlYTa合金粉末,利用超音速火焰喷涂制备了三种涂层,研究了Ta对合金粉末微观组织及物相的影响,绘制了1050℃条件下涂层的高温氧化动力学曲线,研究了500h氧化试验后涂层组织和β相的分布,初步探讨了Ta元素对改善涂层抗氧化性能的作用机理。研究结果表明:Ta通过提高MCrAlY体系抗氧化元素的溶质浓度,促进了氧化膜的形成,随着Ta含量的增加,涂层的内氧化程度降低,涂层抗氧化性能提高。但含Ta涂层在长时间氧化条件下会生成CrTaO_4、AlTaO_4等尖晶石类氧化物,且Ta的氧化物PBR值较大,对涂层的抗热震性能不利。  相似文献   
42.
Water oxidation is a key reaction for water splitting. The decomposition of Fe-based-molecular structures toward Fe-based oxides is a promising method for oxygen-evolution reaction (OER) through water oxidation. The decomposition of Fe-based-molecular structures method results in a slow decomposition of precatalysts and forms Fe oxide-based catalysts. In this study, the Fe species formed through the decomposition of a dinuclear Fe(III) complex under OER is investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and the electrochemical method. In addition, using Ni(OH)2, a new approach is reported for detecting trace Fe species on the electrode surface. The resulting Fe oxide-based catalyst shows a catalytic current with an onset of 621 mV overpotential and the Tafel slope of 113.7 mV/decade at pH 11 in a buffer phosphate.  相似文献   
43.
44.
45.
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.  相似文献   
46.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
47.
To the best of our knowledge, this is the first time to report the preparation of a dotted nanowire arrayed by 5 nm sized palladium and nickel composite nanoparticles (denoted as PdxNiy NPs) via a hydrothermal method using NU and PdO·H2O as the starting materials. The samples prepared at the mass ratio of NU to PdO·H2O 1:1, 1:2 and 2:1 were, respectively, nominated as catalyst c1, c2 and c3. The chemical compositions of all synthesized catalysts were mainly studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), revealing that metallic Ni was one main component of all prepared catalysts. Surprisingly, the main diffraction peaks appearing in the XRD patterns of all prepared catalysts were assigned to the metallic Ni rather than the metallic Pd. Very interestingly, as indicated by the TEM images, a large number of dotted nanowires arrayed by numerous equidistant 5 nm sized nanoparticles were distinctly exhibited in catalyst c1. More importantly, when being used as electrocatalysts for EOR, all prepared catalysts exhibited an evident electrocatalytic activity towards EOR. In the cyclic voltammetry (CV) test, the peak current density of the forward peak of EOR on catalyst c1 measured at 50 mV s?1 was as high as 56.1 mA cm?2, being almost 9 times higher than that of EOR on catalyst c3 (6.3 mA cm?2). Particularly, the polarized current density of EOR on catalyst c1 at 3600 s, as indicated by the chronoamperometry (CA) experiment, was still maintained to be around 1.47 mA cm?2, a value higher than the latest reported data of 1.3 mA cm?2 (measured on the pure Pd/C electrode). Presenting a novel method to prepare dotted nanowires arranged by 5 nm sized nanoparticles and showing the significant eletrocatalytic activities of the newly prepared dotted nanowires towards EOR were the major contributions of this preliminary work.  相似文献   
48.
Direct methanol fuel cells (DMFCs) had been attracted considerable attention for its advantages of high energy density, simplified systems and readily transportation and storage of methanol. However, the notoriously sluggish kinetics of methanol oxidation reaction (MOR) of the anode reaction, had greatly affected the commercialization of DMFCs. On one hand, Pt based catalyst are still the most effective MOR catalysts, while the high cost caused by the high loadings of electrocatalyst to compensate the low MOR activity impedes the wide accessible of DMFCs. In addition, the occurrence of catalyst poisoning owing to the strong interaction between Pt and carbon monoxide (CO) generated during the MOR processing, further leading to the fast decay in the performance and stability of MOR electrocatalysts. Two-dimensional (2D) Pt based nanostructures is regarded to be one promising and effective class of MOR electrocatalysts, and attracted much attention due to the high electron mobility, highly exposed active sites, and extraordinary thermal conduction. In this review, the mechanism of MOR was firstly introduced, and then the synthesis conditions, structure characteristics and methanol oxidation performances both in acidic and alkaline dielectric of 2D Pt based nanocatalysts were introduced. Subsequently, we briefly analyzed the structural characteristics of 2D Pt based nanocatalysts and their advantages, including the low platinum loadings, high specific surface area and majority of atomic active sites exposed. Finally, the opportunities and challenges for designing of advanced 2D Pt based nanocatalysts was proposed and discussed.  相似文献   
49.
Direct Ethanol Fuel Cells (DEFCs) have fascinated remarkable attention on account of their high current density and being environmentally friendly. Developing efficient and durable catalysts with a simple and fast method is a great challenge in the practical applications of DEFCs. To this end, the bimetallic Pd–Ag with adjustable Pd:Ag ratios were synthesized via a simple and one-pot strategy on activated carbon as a support in this study. The Pd–Ag/C catalysts with different molar ratios were synthesized by simultaneous reduction of Pd and Ag ions in the presence of the ethanolic sodium hydroxide as a green reducing agent for the first time. Several different methods, including FE-SEM, HR-TEM, XRD, XPS EDX, ICP-OES, and BET were used to confirm the structure and morphology of the catalysts. The performance of catalysts was also examined in ethanol oxidation. Obtained results of electrochemical experiments revealed that the Pd3–Ag1/C catalyst had superior catalytic activity (2911.98 mAmg?1Pd), durability, and long-stability compared to the other catalysts. The excellent catalytic characteristic can be attributed to the synergistic effect between Pd and Ag. We presume that our simple method have the chance to be utilized as a proper method for the synthesis of fuel cell catalysts.  相似文献   
50.
The dependence of interfacial contact resistance (ICR) on contact materials between cathode and interconnect is systematically studied under both isothermal oxidation and thermal cycling conditions. Three kinds of cathode current-collecting layer (CCCL) are used, (La,Sr) (Co,Fe)O3 (LSCF), LSCF+10%Ag, and Ag, and tested in a SUS430/CCCL/SUS430 sandwich structure to simulate the actual operation of the solid oxide fuel cells (SOFCs). Experimental results show that the ICR of LSCF+10%Ag exhibits the smallest value, in comparison with the specimens with LSCF and Ag paste, as well as the sample without a CCCL. For LSCF+10%Ag contact, the ICR increases from 0.0069 mΩ cm2 to 3.74 mΩ cm2 under an isothermal condition for 150 h, then increases from 3.74 mΩ cm2 to 10.79 mΩ cm2 after 15 thermal cycles. This work provides information for the understanding of possible mechanisms of performance degradation of SOFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号